WE2.R18: Deep and Semantic Learning for Object Detection

Wed, 30 Sep, 14:30 - 16:30 (UTC)
Wed, 30 Sep, 22:30 - 00:30 China Standard Time (UTC +8)
Wed, 30 Sep, 16:30 - 18:30 Central Europe Summer Time (UTC +2)
Wed, 30 Sep, 07:30 - 09:30 Pacific Daylight Time (UTC -7)
Session Co-Chairs: Melba M. Crawford, Purdue University and Jonathan Li, University of Waterloo
Session Managers: Abhishek Potnis and Anabell Pérez Flores
Track: Data Analysis Methods (Optical, Multispectral,Hyperspectral, SAR)
14:30-14:40 (UTC)
22:30-22:40 (UTC +8)
16:30-16:40 (UTC +2)
07:30-07:40 (UTC -7)

WE2.R18.1: UNDERWATER FIELD EQUIPMENT OF A NETWORK OF LANDMARKS OPTIMIZED FOR AUTOMATIC DETECTION BY AI

Laurent Beaudoin, Loica Avanthey, EPITA, France
14:40-14:50 (UTC)
22:40-22:50 (UTC +8)
16:40-16:50 (UTC +2)
07:40-07:50 (UTC -7)

WE2.R18.2: UNDERWATER CALIBRATION IN NEAR REAL TIME: FOCUS ON DETECTION OPTIMIZED BY AI AND SELECTION OF CALIBRATION PATTERNS

Loica Avanthey, Laurent Beaudoin, EPITA, France
14:50-15:00 (UTC)
22:50-23:00 (UTC +8)
16:50-17:00 (UTC +2)
07:50-08:00 (UTC -7)

WE2.R18.3: AUTOMATED DETECTION OF MANHOLE COVERS IN MLS POINT CLOUDS USING A DEEP LEARNING APPROACH

Liyuan Qing, Ke Yang, Weikai Tan, Jonathan Li, University of Waterloo, Canada
15:00-15:10 (UTC)
23:00-23:10 (UTC +8)
17:00-17:10 (UTC +2)
08:00-08:10 (UTC -7)

WE2.R18.4: A Weakly Supervised Deep Learning Approach For Plant Center Detection and Counting

Azam Karami, Melba M. Crawford, Edward J. Delp, Purdue University, United States
15:10-15:20 (UTC)
23:10-23:20 (UTC +8)
17:10-17:20 (UTC +2)
08:10-08:20 (UTC -7)

WE2.R18.5: UAV BASED REMOTE SENSING FOR TASSEL DETECTION AND GROWTH STAGE ESTIMATION OF MAIZE CROP USING MULTISPECTRAL IMAGES

Ajay Kumar, Mahesh Taparia, P. Rajalakshmi, Indian Institute of Technology Hyderabad Telangana India, India; Wei Guo, International Field Phenomics Research Laboratory, Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan, Japan; Balaji Naik, Balram Marathi, Professor Jayashankar Telangana State Agricultural University (PJTSAU), India; Uday Desai, Indian Institute of Technology Hyderabad Telangana India, India
15:20-15:30 (UTC)
23:20-23:30 (UTC +8)
17:20-17:30 (UTC +2)
08:20-08:30 (UTC -7)

WE2.R18.6: ACCURATE DETECTION OF HISTORICAL BUILDINGS USING AERIAL PHOTOGRAPHS AND DEEP TRANSFER LEARNING

Yongzhu Xiong, Jiaying University, China; Qi Chen, University of Hawaii at Manoa, United States; Mingyong Zhu, Yu Zhang, Kekun Huang, Jiaying University, China
15:30-15:40 (UTC)
23:30-23:40 (UTC +8)
17:30-17:40 (UTC +2)
08:30-08:40 (UTC -7)

WE2.R18.7: CENTER PIVOT CLASSIFICATION WITH DEEP RESIDUAL U-NET

Anesmar Olino de Albuquerque, Pablo Pozzobon de Bem, Rebeca dos Santos de Moura, Osmar Luiz Ferreira de Carvalho, Pedro Henrique Guimarães Ferreira, Cristiano Rosa Silva, Roberto Arnaldo Trancoso Gomes, Renato Fontes Guimarães, Osmar Abilio Carvalho Júnior, Universidade de Brasília, Brazil
15:40-15:50 (UTC)
23:40-23:50 (UTC +8)
17:40-17:50 (UTC +2)
08:40-08:50 (UTC -7)

WE2.R18.8: CONVOLUTIONAL NEURAL NETWORK FOR DETECTION OF RESIDENTIAL PHOTOVOLTAIC SYSTEMS IN SATELLITE IMAGERY

Matthew Moraguez, Alejandro Trujillo, Olivier de Weck, Afreen Siddiqi, Massachusetts Institute of Technology, United States
15:50-16:00 (UTC)
23:50-00:00 (UTC +8)
17:50-18:00 (UTC +2)
08:50-09:00 (UTC -7)

WE2.R18.9: SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT

Di Zhang, Martin Gade, Jianwei Zhang, University of Hamburg, Germany
16:00-16:10 (UTC)
00:00-00:10 (UTC +8)
18:00-18:10 (UTC +2)
09:00-09:10 (UTC -7)

WE2.R18.10: IMPROVING THE PERFORMANCE OF SEABIRDS DETECTION COMBINING MULTIPLE SEMANTIC SEGMENTATION MODELS

Chunxiu Liu, Yanfang Ming, Jinshan Zhu, Shandong University of Science and Technology, China
16:10-16:20 (UTC)
00:10-00:20 (UTC +8)
18:10-18:20 (UTC +2)
09:10-09:20 (UTC -7)

WE2.R18.11: DEEP NETWORKS UNDER BLOCK-LEVEL SUPERVISION FOR PIXEL-LEVEL CLOUD DETECTION IN MULTI-SPECTRAL SATELLITE IMAGERY

Wei Chen, Yansheng Li, Yongjun Zhang, School of Remote Sensing and Information Engineering, Wuhan University, China; Xiaolong Hao, Beijing Tracking and Communication Technology Research Institute, China